
THESIS ABSTRACT

Master of Science in Applied Computer Science

Adventist University of Africa

School of Postgraduate Studies

TITLE: A COMPENSATORY APPROACH TO ANTI-VIRUS SHORTFALLS

Researcher: Tom Ombaba Ongaro

Primary Adviser: Jules Pagna Disso, PhD

Date Completed: November 2019

Computer systems security has become an increasingly important field. In the

quest to provide the much-needed security many options exist. Systems have however

continued to suffer attacks from malware despite the existing controls that have been

put in place. One such control is the use of Anti-viruses which are widely used in

many systems.

Today malware exists that can bypass anti-viruses and cause harm to systems.

Many controls exist to try to combat malware infiltration. Organizations and small

businesses may not always be in a position to choose the best option for their

environment when it comes to dealing with malware. They may not also be able to

configure system security tools that may be available to deal with malware detection

and prevention.

One freely available tool is Sysmon. Sysmon logs critical events in a windows

environment and can send them out for further analysis and classification. This

research seeks to understand why some malware can bypass anti-viruses and seeks to

close the gap by providing tangible recommendations. The end goal provides results

that can be adopted by anyone to try to identify malicious activity in their systems by

using freely available tools.

Adventist University of Africa

School of Postgraduate Studies

A COMPENSATORY APPROACH TO ANTI-VIRUS SHORTFALLS

A thesis

presented in partial fulfillment

of the requirements for the degree

Master of Science in Applied Computer Science

by

Tom Ombaba Ongaro

May 2020

Copyright 2020 © Tom Ombaba Ongaro

All Rights Reserved

A COMPENSATORY APPROACH TO ANTI-VIRUS SHORTFALLS

A thesis

presented in partial fulfillment

of the requirements for the degree

Master of Science in Applied Computer Science

by

Tom Ombaba Ongaro

APPROVAL BY THE COMMITTEE:

Primary Adviser
Jules Pagna, PhD

 Programme Director, MScACS

Lossan Bonde, PhD

Secondary Adviser

Lossan Bonde, PhD

 Head of Department

Lossan Bonde, PhD

External Examiner

Paul-Marie Moulema Douala, DSc

 Dean, School of Postgraduate Studies

Daniel Ganu, DrPH

AUA Main Campus

Date: May 2020

iv

TABLE OF CONTENTS

LIST OF FIGURES ... vii

ACKNOWLEDGMENTS .. ix

CHAPTER

1. INTRODUCTION ... 1

Motivation .. 1

Statement of the Problem ... 2
Research Objectives ... 2

2. LITERATURE REVIEW .. 3

A Brief History of Anti-Viruses .. 3

How Anti-Viruses Work .. 4
Methods of Malware Detection ... 4
Current Tools for Bypassing Anti-Viruses .. 5

Marble .. 5

Grasshopper ... 6
HIVE .. 6
Anti-Virus Evasion Tool (AVET) ... 6

peCloak.py ... 6
PowerShell ... 7

Veil-Evasion .. 7
Shellter ... 8
MsfVenom ... 9

Metasploit .. 9
Techniques Behind The Tools ... 10

Obfuscation .. 10
Polymorphism .. 12

Garbage code insertion. ... 12

Instruction substitution techniques. ... 12

Code-transposition. .. 12
Register-reassignment. ... 12
Tools using polymorphism. ... 12

Countering effects of polymorphism. 13
Encryption .. 13
Encoding .. 15

Sysmon: A Compensatory Tool ... 17
Sysmon Capabilities... 17
Events to Investigate in Sysmon Logs ... 18

v

3. METHODOLOGY .. 20

Research Methodology Justification .. 20
Overview .. 20
Objectives .. 21
Kali Linux Virtual Environment .. 22

Metasploit Framework ... 22
Windows 7 Virtual Machine .. 23
Payloads ... 24

Generated Payloads .. 24
Acquired Payloads ... 24

Somoto payload. .. 24
Artemis payload. .. 24
Dyre payload. ... 24

NiVdort payload... 25
njRAT payload. .. 25

ELK (Elasticsearch, Logstash, Kibana) Stack ... 25
Sysmon ... 25

Winlogbeat ... 25
ElastAlert ... 26

4. RESULTS AND ANALYSIS .. 27

Malware Dataset .. 27

Analysis of the Data ... 28
mirc755.exe Malware .. 28
power.exe Malware .. 29

Event Execution Sequence and Timing Analysis .. 35

Mitre ATT&CK ... 38
Event Alerting .. 41

5. CONCLUSION AND RECOMMENDATIONS .. 43

Contributions.. 43
Limitations ... 44

Recommendations .. 45
Future Work Expectations ... 45
Summary .. 46

APPENDICES ... 47

A. PAYLOAD GENERATION ... 48

B. INSTALLING AND CONFIGURING ELK .. 51

C. INSTALLING AND CONFIGURING SYSMON 58

D. INSTALLING AND CONFIGURING WINLOGBEAT 61

E. INSTALLING AND CONFIGURING ELASALERT 66

vi

F. GRAPHS FOR MALWARE EVENT SEQUENCE 69

REFERENCES .. 77

vii

LIST OF FIGURES

1. Traditional vs Modern Malware .. 10

2. Sysmon Events ... 19

3. VirusTotal for mirc755.exe .. 31

4. Antiscan.me for mirc755.exe ... 32

5. VirusTotal for power.exe ... 33

6. Antiscan for power.exe .. 34

7. Events Triggered by Each Malware ... 35

8. Network Connection .. 39

9. Remote Thread Creation .. 39

10. Registry Event and File Create Stream Hash ... 40

11. Sample Telegram Alert .. 42

12. Java-version Check .. 51

13. Elasticsearch Status Check .. 52

14. Elasticsearch Service Enabling .. 53

15. Kibana File Edit ... 53

16. Kibana Service Check .. 54

17. Nginx Status Check.. 55

18. Nginx Configuration Commands ... 55

19. Nginx Status Check and Private Keys ... 56

20. Logstash Configuration .. 57

21. Lostash Output File Configuration .. 57

22. Logstash Status Check ... 57

23. Sysmon Version Check .. 59

viii

24. Sysmon Installation .. 59

25. Successful Sysmon Install message ... 60

26. Sample Operation Sysmon Event Viewer .. 60

27. Checking Winlogbeat Version ... 61

28. Possible Error During Installation ... 62

29. Fixing The Error .. 63

30. Pointing to Sysmon Logs ... 64

31. Defining the Host ... 64

32. Winlogbeat Status Check ... 65

33. Starting Winlogbeat ... 66

34. ELK operational Check .. 67

35. Sample Logs from Windows 7 Machine ... 67

36. mirc755 Event Sequence.. 69

37. Power.exe Event Sequence .. 70

38. NIvdort Event Sequence .. 71

39. Njrat Event Sequence ... 72

40. Somoto1 Event Sequence .. 73

41. Somoto2 Event Sequence .. 74

42. Artemis1 Event Sequence .. 75

43. Artemis2 Event Sequence .. 76

44. Artemis3 Event Sequence .. 76

ix

ACKNOWLEDGMENTS

This thesis was made possible by the support of various family members,

colleagues, and friends. I am indebted to them for their valuable support that made

this work possible.

To my dear wife thanks for the wonderful support that I got from you and for

guiding the kids when I was not at home. To my wonderful son and daughter who

always added a smile to my face when I came back home probing me as to what

defense meant.

To my parents. My Dad who taught us that nobody owed us a living and that

we ought to never give up in life. I would have wished for my Mom to be alive at this

moment but I treasure the advice she gave me to value education and use it as the

strongest tool in the world to eradicate poverty. To my siblings far and near who

always called me to ask me how things were.

To the AUA Computer Science Department for providing a chance for me to

learn and acquire new skills and even inspire me to come up with this thesis. Thanks

to Dr. Lossan Bonde for pushing us even when we thought there was no more

distance to cover. You have done an excellent job in directing this programme.

Thanks, Dr. Jules Pagna. Your expertise and vast experience in the field of

Cyber Security made me feel privileged to have you as my primary advisor. Your

guidance has been extremely valuable. Your malware expertise was essential in

helping me formulate this project. I could not have asked for a better advisor.

x

And to the many professors over the years from various academic institutions

who helped shape our ideas and prepare the ground for this research.

To the Adventist University of Africa and all those involved in making this

happen, thank you for thinking of the need to provide qualified cybersecurity

professionals. This degree fills a critical gap in the field of computer science. I will be

a proud graduate of this degree from the Adventist University of Africa.

Above all, I want to thank the Almighty who gave me the power and wisdom

to do all that I did. Nothing afore-mentioned would have been possible without you.

1

CHAPTER 1

INTRODUCTION

Motivation

In the era of the widespread of internet usage and the multiplication of

computer systems around the world, people need some form of protection from

malicious activities. The increase of attacks both local and international have also

increased the need to have our devices protected whenever we are exposed to the

internet.

On the other hand, hackers have also intensified their activities because of the

high hopes of getting their intentions met with minimal evidence which is different

from the old way of stealing things. All that hackers need to do now is just get into

your machine instead of getting into your house. This has led to the development of

malware that sometimes goes unnoticed until their desired end is met.

Internet users have often used Anti-viruses in the view of getting protection

from viruses and other malware that may be existing on the network. It is however not

the case that all viruses get caught by the Anti-viruses that people choose to install in

their systems. End users have been disappointed when they get attacked by Viruses

whereas they had installed Anti-viruses in their systems.

The loss that comes because of Cybercrime continues to rise at unprecedented

speeds. It is estimated that in the next five years the cost of cybercrime will be $ 5.2

trillion [1].

2

Statement of the Problem

It is therefore imperative to look at how Anti-viruses work and also how

hackers have been able to bypass Anti-Viruses. It will be the intention of this thesis to

try to address the gap between the two in the view of increasing the efficiency of

malware detection and boost compensation control and reduce financial crime.

Research Objectives

In this thesis, I have briefly reviewed how Anti-viruses work and the

techniques used in popular tools to bypass Anti-viruses. The techniques used will give

insight into how malware can get into legitimate systems and how they accomplish

their tasks. The research looks at ways of compensating this weakness through

logging. I conclude with recommendations on what can be done to increase the

efficiency of Anti-viruses against malware detection, especially from the enterprise

level perspective.

3

CHAPTER 2

LITERATURE REVIEW

A Brief History of Anti-Viruses

In the early days of the computer industry attacking computers and software

was not feasible because most of the computers and software were isolated. Things

started changing around 1968 when modems and multiplexors were developed. This

made it easier for people to remotely access other machines. With the advance in

similar technology, the internet era came into being. In 1982 a group of hackers broke

into 60 computer systems. According to Duncan [2], this attack led to the first

congressional hearings on computer security and also to new laws against cybercrime.

Hackers started forming into groups that shared data and information. These

groups started to appear in the early 1980s. With the rise of viruses, Anti-viruses

started to become popular. According to techlineinfor.com [3] by 1987, there were

two Anti-Virus utilities available; namely Flushot plus and Anti4us. Between 1987

and 1989 a group called “Virus-L” was being used to update individuals about

security and sharing information tools, and shareware to help remove the virus

infection. Two individuals were on the list and that is John McAfee and Eugene

Kaspersky. From these two individuals, we have two popular Anti-virus software

names by their last names. In 1989 John McAfee went on to develop his own business

that was selling software that protected both hardware and software.

4

How Anti-Viruses Work

Anti-virus software is designed to detect, prevent, and even take action against

malicious software that may be found on computers. It is supposed to remove viruses,

worms, and Trojan horses. Anti-viruses can further be used to remove unwanted

spyware and adware. Anti-virus software begins by checking your computer and

comparing it to known attacks. The known attacks normally have peculiar signatures

in their code that are used to identify them. It can also check for behaviors or

activities that are unusual in your computer. In the proceeding section, I will discuss

in detail these methods and how they work to accomplish their work.

Methods of Malware Detection

Signature-based malware detectors work by comparing malicious codes with

known signature databases. A binary that appears to be untrusted is scanned to find

out unique byte-sequences. When a binary is confirmed as malicious its signature is

stored in a database which is then used to update Anti-virus software. When that

malicious code appears somewhere else it is then identified as malicious and is then

either quarantined or deleted based on the preferred action and the previous

configuration of the Anti-Virus system. This is one of the most common methods of

malware detection. The escalating rate of new malware and the advent of self-

mutating polymorphic malware have given rise to the development of automated data

mining techniques for new malware. See [4].

The other type of detection method used is behavior-based detection. In this

type of detection, the behavior of the system when something malicious happens is

taken into consideration. When such an action is detected it is then flagged off as

malicious and then separated and scrutinized further. A good example could be to

monitor the system calls and functions that become active when malware is executed

5

in the system. A pattern can then be established which can give a general trend of the

behavior of malware when infecting a system. According to [5] the sequence of a

system call is reliable and can be used as a reliable method of detecting malicious

software. This method is rooted in the fact that however, the appearance of the

malware may be, it will still behave badly for it to accomplish its purposes in

infecting the computer.

Lastly, we have Anomaly-based detection. In this type of detection, the

detector uses its knowledge of normal behavior to decide whether a program is

malicious or not. It has some kind of rule set of the normal system behavior and thus

uses that knowledge to identify the unusual or rather anomalous behavior.

Current Tools for Bypassing Anti-Viruses

Many techniques are used nowadays to bypass Anti-viruses. Some were made

for good purposes like penetration testing and others were specifically made for

malicious purposes. In this section, I will go through a number of the tools that have

come to light in bypassing Anti-viruses.

The tools are described in the sections that follow. This list is not exhaustive

but tries to get the most common tools used at the moment by looking at resources

from a variety of sources including hacking reports.

Marble

This tool was published by wiki leaks as part of the tools that were used by a

governmental agency to bypass malware detection. It uses the Marble framework and

according to the report it is used to obfuscate or scramble malware code so that Anti-

Virus firms cannot understand the code. This framework included a de-obfuscator to

reverse the code. Without any relevant academic publication, a comprehensive list of

the tools released by WikiLeaks can be found on the WikiLeaks site [6].

6

Grasshopper

Grasshopper was also part of the other tools that were revealed by wiki leaks

and it is used to build customized and persistent malware payloads for Microsoft

Windows Operating systems. This tool was developed to avoid anti-malware

detection [7].

HIVE

This tool also forms part of the set of tools released by WikiLeaks. This tool

according to WikiLeaks was used by the American Central Intelligence Agency (CIA)

and it had the capability of developing a back-end infrastructure with a public-facing

https interface. This interface was used by the CIA to transfer information from target

desktops computers and machines back to the CIA. These devices would then be open

to receive further commands from the CIA operators to execute specific tasks.

Anti-Virus Evasion Tool (AVET)

The Anti-Virus Evasion tool was developed for making life easier for pen-

testers and for experimenting with Anti-Virus evasion techniques. A detailed

explanation for its use can be found on GitHub [8]. This tool uses an XOR encryption

process for hiding its payload.

peCloak.py

The peCLoak.py is a python script that automates the process of hiding

malicious windows executable from Anti-Virus detection. This tool was created as an

experiment in Antivirus evasion and the experiment was naturally successful with all

AV software under analysis being evaded [9].

7

PowerShell

Powershell has been a great benefit for windows systems automation. It

however also gives hackers leverage. This tool almost gives us access to windows

features in a programmatic way. This tool is extendable and it can be used to

administrate Active Directory, email systems, SharePoint, and more. It also gives us

access to .NET libraries giving it such power in flexibility. These capabilities have

also given hackers leverage in hacking the windows systems [10].

Veil-Evasion

Veil-Evasion is a tool that is used to generate payload executables that are

used to bypass Anti-Virus software. This tool works in a framework called veil-

framework which is written in python. This tool was written by Chris Trouncer and

the framework consists of two tools: Evasion and Ordnance [11]. Evasion aggregates

various techniques into the framework that simplifies management while Ordnance

generates the shellcode for supported payloads which are then used to create payloads

from known vulnerabilities.

Some key features of Veil-Evasion include:

1. It can integrate third-party tools such as Hyperion (which encrypts an EXE file

with AES 128-bit encryption), PEScrambler, and BackDoor Factory

2. Payloads can be generated and seamlessly substituted into all PsExec calls

3. Users can reuse shellcode or implement their encryption method

4. Minimal Python installation to invoke shellcode; it uploads a minimal Python.zip

installation and the 7Zip binary. The Python environment is unzipped, invoking

the shellcode. Since the only files that interact with the victim are trusted Python

libraries and the interpreter, the victim’s AV does not detect or alarm on any

unusual activity.

5. Veil-Evasion allows testers to use a safe check against VirusTotal. When any

payload is created, a SHA1 hash is created and added to hashes.txt, located in the

/veil-output directory. Testers can invoke the checkvt script to submit the hashes

to VirusTotal, which will check the SHA1 hash values against its malware

database. If a Veil-Evasion payload triggers a match, then the tester knows that it

8

may be detected by the target system. If it does not trigger a match, then the

exploit payload will bypass the antivirus software [11].

A standalone payload in the veil has options that make it work well. It will be

important to note that the only files that interact with the victim are trusted python

libraries and the interpreter. In this scenario, the victims' AV does not detect any

unusual activity. The Set backdoor configures the victims' registry to launch the RDP

sticky keys backdoor.

Veil-Evasion uses a safe check against VirusTotal which is a free online tool

for checking malicious codes by comparing their signatures with existing signatures

in their database. Testers can invoke a checkvt script to submit their hashes to

VirusTotal which will check the SHA1 values against its malware database.

Shellter

Shelter is a shellcode injection tool. This shellcode can be something else that

is already generated. The full features of the program can be found on the shelter

website [12].

One of the notable features of Shelter is its ability to analyze the flow of

execution in the legitimate program and place the shellcode in a natural point in the

flow. This gives it a huge advantage because there is not a sudden redirection to

somewhere else in the code or a weird memory request, like one may see in a non-

dynamically-infected executable [13]. This makes the code look like nothing was

injected into it. So it gives the appearance of doing what it was always intended to do.

Shelter incorporates shellcode into the natural flow of execution in such an

imperceptible way that makes it almost impossible to detect. One of the malware used

in this research is a manually made malware that injects code a legitimate windows

application for internet relay chat.

9

MsfVenom

Msfvenom is an exploit packing tool. It comes with the Metasploit framework

which will be explained in the section that follows. This tool can build everything

from simple exploits to complex exploits. These exploits contain code that is used to

obfuscate/hide the exploits that are used to bypass Anti-Viruses. According to [14],

this tool is the de-facto tool in the Metasploit framework to create and encode various

payloads.

Metasploit

The Metasploit Framework is an open-source tool found inside Kali Linux

distribution. It can be used for vulnerability analysis and penetration testing. It was

created by HD Moore in 2003 using the Perl language and later it was modified using

the Ruby language [15]. This framework can help you write, test, and execute exploit

code. It can be summed up as a collection of commonly used tools that provide a

complete environment for penetration testing [16]. The difference between traditional

and modern malware is shown in Figure 1 [19].

10

Figure 1. Traditional vs Modern Malware

Techniques behind the Tools

In this subsection, I will go in detail as to what techniques are used to make

the aforementioned tools effective in bypassing Anti-viruses. These techniques are

mostly what shows up as the characteristics of the malware. Blackhat USA has done

some vast analysis of malware which reveals most of the characteristics in the

empirical data that they have provided [17]. It will be important to note at this point

that some tools employ more than one technique or rather have many options that use

different techniques to accomplish their goal.

Obfuscation

From ancient times obfuscation has been used to hide the obvious meaning of

something. Obfuscation generally refers to the process of hiding or changing the

structure of something so that its intent or appearance is not obvious. It can be used

for good purposes but it can also be used for bad reasons. [18], defines obfuscation as

a term of art that describes a set of techniques used to evade antivirus products that

rely heavily on signatures. In this section, I shall focus on how obfuscation has been

11

used in aiding the hiding of Malware Detection by Anti-viruses. There is a big

difference between traditional malware and modern malware. [19]. Below is a good

summary of the two [19]:

This difference has made obfuscated malware to be harder to detect. The

nature of the new malware has paused challenges even to machine learning techniques

that are used for malware detection [20]. According to [21] code obfuscation changes

malware syntax but not its intended behavior. This behavior has to be preserved.

Obfuscation techniques can be divided into two categories; anti-static and anti-

dynamic analysis techniques. Anti-static obfuscation techniques hide the malware in

the light of static malware detections techniques aforementioned. Static analysis

involves analyzing the malware without executing it. Anti-dynamic analysis

techniques hide their activities in the light of dynamic/heuristic malware detection

techniques.

Dynamic analysis involves running the malware in a controlled environment

and studying its behavior. The activities that are monitored during this process include

things like the creation and deletion of new files, new log entries, registry entries,

URL accessed, and data transmitted. Obfuscation techniques used include dead code

insertion, register re-assignment, subroutine re-ordering, instruction substitution, code

transposition, and code integration [22]. Others include packers that compress or

“pack” a malware program and crypters which encrypt a malware or parts of a

malware.

Some malware obfuscation techniques transform the malware binaries to self-

compressed and uniquely structured binary files. This is designed to resist reverse

engineering making static analysis to be very expensive and unreliable [23].

12

Polymorphism

This technique is very hard to detect because of the way it manifests itself.

This is the ability for malware to take many forms. This poses a huge challenge by

making it harder to make a signature of malware that can be used by anti-malware

solutions. According to [24] polymorphism was initially adopted by malware writers

to counter the simple string searches that Anti-Virus engines employed to detect

malware. Some of the methods used for polymorphism are listed below:

Garbage code insertion. This means useless code is inserted into the malware

after infection. It’s the simplest form of code obfuscation done by inserting NOPs (No

Operation Performed) [25]. This method aims to make it hard to compare the existing

code with the previous code.

Instruction substitution techniques. This involves the technique of replacing

the code with an equivalent but a different one. This technique according to [26]

evades most malware detection techniques.

Code-transposition. This technique changes the execution order by using

jumps. It changes the program structure by reordering the program instruction or flow

without changing the execution flow. This can be done on a single instruction level of

a code of block [27].

Register-reassignment. This technique simply re-arranges the registers. The

register of the code is thus replaced by unused registers while the program code and

its behaviors remaining the same [25].

Tools using polymorphism. One of the tools that use polymorphism is veil

evasion. Veil evasion has an encoder that uses a polymorphic XOR additive feedback

encoding against a 4-byte key. So, it changes its shape using an XOR encrypting

scheme. This encoder can be made handier by iterating it several times. The iteration

13

must however be handled carefully as each additional iteration increased the size of

the payload. At the time of its implementation, it was ranked as “excellent” [28] by

Metasploit.

One other payload generator that uses polymorphism is Shellter. Shellter has a

threat context-aware polymorphic engine. The user can also use a custom

polymorphic code of their own.

Countering effects of polymorphism. Several methods have been employed

to try to study and counter the effects of polymorphic malware. One of them is to

compare the changes that polymorphic malware exhibits to genetic changes that take

place biologically. These changes are similar to mutations of biological sequences that

occur over successive generations [29].

According to [30] network-based security is needed to evade zero-day

polymorphic Malware as most host-based securities that are implemented cannot

detect a well-crafted attack. Iyhothi Kumar [31] suggested a framework that uses

machine learning to develop a defense system against polymorphic malware. This

experiment used the shikata-ga-nai encoder found in the veil framework to generate

the polymorphic malware.

Fractal analysis which is the study of shapes or patterns in data that are not

easily described by simple geometry has been shown [32] to be a promising domain in

coping with next-generation threats that obfuscate their signatures and also learn to

depict themselves as legitimate processes.

Encryption

There are two main reasons for doing malware encryption. The first one is to

prevent or make it hard for the malware to be detected and the other one is to make it

hard for someone to analyze the activities of the malware. To encrypt a malware one

14

needs some components. The actual malware which is encrypted, a module to perform

the encryption/decryption and a key. Encryption has been used in many places to

produce malware that has been successful in infecting computers. CryptoLocker was

one of the most widely known viruses that were found early. This virus was

discovered in 2013 and in addition to encrypting sensitive files, it would communicate

with the command and control server and even take a screenshot off the infected

machine [33].

Several modern tools use encryption to hide their malware from being

detected by Anti-Viruses. Veil evasion uses an encryptor called Hyperion. This

executable encryptor uses Advanced Encryption Standard (AES) a current industry

standard for encryption. After encrypting the executable Hyperion throws away the

encryption keys. So when the executable runs it brute forces the encryption key to

decrypt itself back to the original executable [34].

Advanced Encryption Standard is considered a pretty strong encryption

standard. Hyperion however uses brute force to get the encryption key and to cater to

this. Hyperion greatly reduces the possible keyspace for the encryption key and this

fact should be taken into consideration in trying to analyze malware that is generated

by Hyperion.

Powershell has an amazing built-in remoting system. This allows users to

handle most remoting tasks in many different kinds of configurations. There are many

options available for authentication namely: Basic, Digest, Kerberos, Negotiate, and

CredSSP. According to [35], in all the mentioned Authentication types, the payload

for the message you send is encrypted directly by the remoting protocol except the

Basic authentication.

15

PowerShell gives access to almost all of the windows features in a

programmatic way. It also gives access to the .NET libraries from a scripting

standpoint, making it one of the most flexible tools you can use in a windows

environment. So anything we can write in .NET we can write in PowerShell. This is a

very interesting feature because it means that we can go beyond basic scripting and

interact with kernel functions and more. This gives additional flexibility that would

normally require the use of separate programs. Powershell scripts can be loaded and

run from memory without ever writing files to the hard drive [36]. This allows

PowerShell not to leave file-based evidence making it hard for detection from file-

based antivirus protection.

One other feature of PowerShell that is worth noting here is its ability to use

Internet Explorer options and so things like proxy support are built into PowerShell.

With this, we can use built-in web libraries to load code remotely without having to

download code to the target system. This allows attackers to be stealthier since the

file-system will not be able to show the pulls from the website [10].

Modules in PowerShell are very portable and this makes it possible for them

to be loaded in a variety of ways. This gives us the ability to load system install

modules and modules in other locations. This feature gives a very conducive

environment for hackers since one of their main aims is to leave as few traces as

possible of their actions. Items that are frequently used can be left on the SMB share

or even on a website and then referenced from there. Bypassing Anti-Viruses is easier

because code can be obfuscated and decoded on the fly.

Encoding

An encoder takes input/shellcode and transforms it. The encoding is like

adding a layer of shells around the payload to make it hard to be detected by the Anti-

16

Virus. This changes the way the code looks without changing the underlying

functionality. The MSFvenom tool has the option of encoding the payload.

MSFvenom has different options for encoders that you can choose from and how

many times you can do the encoding.

Shellter uses encoding as one of its methods to try to make its payloads

undetectable by Anti-Virus programs. Shellter 4.0 provided its dynamic encoder. The

encoding engine will apply a random amount of XOR, ADD, SUB, NOT operations

and it will generate a decoder each time based on the chosen operations. The sequence

of these operations is also randomly chosen. The use of registers is also randomized to

provide a more dynamic output. According to [28], the majority of antiviruses will not

be able to identify the malicious executable, depending on how the attackers re-

encode the endless number of signatures.

MSFvenom utility has the option of encoding payloads and iterating them

several times to try to make them stealthier. The MSFvenom framework has different

polymorphic encoders to stimulate polymorphic malware [31]. One of the encoders it

uses is the Shikata_ga_nai encoder which has been mentioned before. With this

encoder even the decoder stab is polymorphic.

Metasploit has a variety of encoders that can also be used in addition to the

other encoders mentioned here. To make the payload stealthier multiple encoders can

be combined and used together. The summary of the tools and techniques employed

in bypassing anti-virus software is shown in Table 1.

17

Table 1. Summary of Tools and Techniques Employed in Bypassing Anti-Virus

Software

 Obfuscation Polymorphism Encryption Encoding Injection

Veil-Evasion

PowerShell

peCloak.py

Shellter

Metasploit

MSFvenom

Marble

Grasshopper

HIVE

Sysmon: A Compensatory Tool

Sysmon Capabilities

Sysmon (System monitor) is a Windows system service that also acts as a

driver. The system monitor tool logs the windows events. This tool was developed by

Mark Russinovich and Thomas Garnier [37]. It is especially important to note that this

tool logs additional activity to the event log such as network connections, running

processes, and file changes. Mark Russinovich wrote this tool to track the potentially

malicious activity on individual computers and across the network [38].

Sysmon is configured as a boot-start driver and it begins capturing information

early in the boot [38]. This is very key as it helps track system events at a very early

stage. This tool compliments some of the Windows’ shortfalls. In the normal

Windows machines, network connection information is simultaneously too limited

and verbose [39]. Sysmon provides more information by giving details that can help

track malicious connections. This tool can also help forensics to trace intruder activity

across the network [39]. It is also important to note that Sysmon was written for use

within the Microsoft corporate network.

18

Sysmon runs silently in the background and the event viewer records its

findings. The advantages of Sysmon are as follows:

1. It can log the process creation for both current and parent processes

2. It can record the hash of process image files using SHA1 (default), MD5 of

SHA256

3. It has a unique GUID in the process to create events. This allows for a proper

correlation of events. The windows events log differs in that it can re-use process

IDs.

4. For a network connection, it can provide source processes, IP addresses, port

numbers, and hostnames.

5. It can detect changes in the file creation time. This is key in determining when a

file was created. Malicious users can change the file creation time to bypass

system security.

6. It can generate events even in the early boot process. This helps in detecting

kernel-mode malware.

Sysmon logs different events and gives them unique Ids that can be used to

study and identify the activity that takes place within the system and a specific period.

Below is a summary of the IDs and the categories that they represent:

Events to Investigate in Sysmon Logs

Mark Russinovich gives a good summary in [40] that gives indicators of

events that one needs to check while analyzing the Sysmon logs. I will highlight them

below as processes that should be investigated when they show up in the logs:

1. Processes that have no icon

2. Processes that have no description of the company name

3. Processes that have unsigned Microsoft images

4. Processes that live in windows directory of user profile

5. Processes that are packed

6. Processes that have strange URLs in their strings

7. Processes that have open TCP endpoints

19

8. Processes that host suspicious DLLs or services

Figure 2 shows the Sysmon Events.

Figure 2. Sysmon Events [39]

The strategy commonly used by hackers that can be captured by Sysmon is as

follows: Attackers can change the file timestamps in an attempt to cover their tracks

[41]. If configured well Sysmon can capture the file creation time change that can

give a good signal of something bad.

20

CHAPTER 3

METHODOLOGY

The literature review identified numerous techniques that are used to bypass

Anti-viruses. This has led to attacks that bypass Anti-viruses. This research intends to

try to close the gap that leads to the attacks. This gap led to the research question

“Why do Anti-Viruses fail to protect from Malware?” An appropriate research

methodology will go a long way in answering the research question. In the quest to

answer the research question an applied experimentation methodology was selected.

In this chapter, the model that guided the execution of the study is well outlined in

detail with its implementation requirements.

Research Methodology Justification

At the core of this research was the quest to study Anti-viruses and come up

with ways that any known weakness can be compensated. This led to the search of a

research methodology that studies an existing system and tries to compensate for its

weaknesses. Applied experimentation that is largely geared toward understanding the

behavior of a system best fits this scenario. According to [42] Applied

experimentation is the “process of evaluating performance or effectiveness of an

engineered system in solving a problem under rigorously controlled systems.”

Overview

Atomic test cases of real malware are considered in determining their behavior

with the view of detecting them. This will be viewed in the light of the events that

they generate in windows events that are further channeled to Sysmon for further

21

investigation and analysis. Sufficient coverage of the problem space was considered

by looking at freely available portals for checking the efficiency of Anti-viruses

against malware. Seven malware was considered for this benchmark. Five of them

came from the freely available malware bank known as theZoo.

It consists of a depository of live malware that is freely available for research

purposes [43]. Two of them were manually made. The process used to make the

manual ones will be given later. It is important to note at this point that the five that

came from theZoo are detectable by most anti-viruses but the two are not. The overall

behavior of all of them was noted. This is key in determining whether the results are

consistent when they go through Sysmon. The events triggered by malware whether

detectable or not will give insight to the capability of Sysmon to detect malware

behavior through the various events triggered.

The two manually produced malware that bypasses the antivirus will be tested

through freely available online scanners. One of them is the virus total. Virustotal is a

free online, virus, malware, and URL scanner [44]. Other sites used for scanning

malware include nodistribute.com and antiscan.com.

The tools that were used to generate payloads during the tests were from Kali

Linux distribution. I used the windows 7 operating system that was installed on a

Virtual Machine. The windows system was used to check the events that are triggered

when malware is installed and running in the system.

Objectives

The clear objectives of this study were as follows:

1. To create awareness that Anti-Viruses can be bypassed by malware and give

insight into the tools and techniques that are employed.

2. Identify windows event analysis that can help to identify malware or malware

patterns

22

3. Give scientific recommendations as to what can be done to increase the efficiency

of the Anti-viruses in a compensatory approach, to increase the overall security of

the enterprise.

The tools below have been specifically selected with the aim and view of

meeting the objectives.

Kali Linux Virtual Environment

Kali Linux is a popular Linux distribution. It’s mostly used for Penetration

testing but it can also be used to generate payloads that can be used for other

purposes. It has over 600 security tools built into the distribution. It’s also open source

and therefore it can be used for free as long as you know how to use it. I used some of

the tools especially in the area of payload generation.

This distribution of Linux is especially geared towards people who want to

engage in security. It can be of interest to anyone who wants to engage in security

testing, exploit development, reverse engineering, or even digital forensics. For my

purpose, I installed Kali Linux in a virtual environment hosted by Ubuntu Linux

distribution. l used a Virtual box to run the Kali Linux.

Metasploit Framework

Metasploit is a very widely used penetration testing tool that is part of the Kali

Linux distribution. It’s used by both attackers and defenders. It has a couple of

libraries and modules. At the heart of Metasploit are three libraries namely REX,

MSF CORE, and MSF BASE. REX handles most of the core functions like setting up

sockets, formatting, and other raw functions. MSF CORE provides the underlying

API and the actual core that describes the framework. MSF BASE provides friendly

API support to modules [45].

23

There are many modules in Metasploit and these modules differ in

functionality. Some modules are used to create access channels to exploited systems

and we have auxiliary modules that are used to carry out operations such as

information gathering, fingerprinting, fuzzing an application, and logging to various

services. Two of them will be of major interest in attaining the objectives. The

payload module will be employed in creating a meterpreter shell that will give us

access to the target machine and also help us to maintain access to the exploited

machine. The auxiliary module will also be used for information gathering from the

exploited machine.

Windows 7 Virtual Machine

For this research, I used windows 7 virtual machine. The windows virtual

machine resided in the same virtual box and also hosted Kali Linux as a virtual

machine. The advantage of using windows in this environment is the fact that

someone can make snapshots of the same windows machine and use it for different

test purposes. In this lab, I first made the initial snapshot that had windows 7 with free

Avast Anti-Virus installed.

This snapshot was also installed with Sysmon and Winlogbeat which will be

discussed in the sections to follow. Before the introduction of the payload, the Anti-

Virus was fully updated. The payloads were then introduced and scanned using the

Avast free version of the Anti-Virus. Avast was picked after a careful study of free

anti-viruses suggested it to be one of the best [46]. The payloads were also tested

online at virus total and antiscan.me. The results were recorded and tabulated.

24

Payloads

Generated Payloads

At the core of this research is creating awareness that Anti-Viruses can be

bypassed. Many methods can be used to generate payloads that bypass Anti-Viruses.

For this experiment, we used the aforementioned tool Shellter and another one called

zirikatu to create the payloads. These payloads were used to bypass a current free

Anti-virus that has been fully updated. The payloads were also tested in free to use

online sites that test how different Anti-viruses react to different payloads. In total

seven payloads were used with five coming from theZoo and two manually made. The

Process of generating the two manually made payloads is discussed in the appendix.

Acquired Payloads

The following payloads were acquired from theZoo and their respective

hashes in sha256:

Somoto payload. Somoto is a browser hijacker malware. Mostly associated

with video applications like FLV I players [47].

sha256:ddf2542dc5ac74a98d5ee9e55497572104d6c880aad9137caf884d10ca5

953ce

Artemis payload. This malware prevents users from using the computer, run

windows registry, or install anti-malware [48].

sha256:834d1dbfab8330ea5f1844f6e905ed0ac19d1033ee9a9f1122ad2051c56

783dc

Dyre payload. Dyre otherwise known as Dyre Banking Trojan harvests

credentials primarily targeting online banking websites [49].

sha256:a6f10947d6c37b62a4c0f5e4d0d32cc826a957c7d1026f316d5651262c4

f0b24

25

NiVdort payload. This malware steals victims credentials [50].

sha256:3fbdede25a0eb245357501033b64adcd9380e592f386ef05748ca3d9b42

910af

njRAT payload. This malware gives a simple backdoor to the victim’s

machine. It was according to [51], considered the most active network malware in

2017.

sha256:5ff121c57e4a2f2f75e4985660c9666a44b39ef2549b29b3a4d6a1e06e6e

3f65

ELK (Elasticsearch, Logstash, Kibana)

Stack

The Elastic Stack is a collection of three amazing open-source projects namely

Elasticsearch, Logstash, and Kibana. These have been built to work exceptionally

well together. Logstash is used to collect and transform logs from different sources. In

my setting, the winlogbeat will be working to send the logs to logstash. Elasticsearch

as the name suggests is used to search and analyze logs and finally, Kibana is used to

visualize and manage the logs by creating fantastic dashboards. We will incorporate

all the three in our setting. I will discuss below how we installed them in our lab

setting. The host for the stack is ubuntu 18.04.2 LTS

Sysmon

This tool lies at the core of this research in that it can detect changes in the

system that have been specially related to malicious activities that are taking place

within the system. Sysmon will also be used to gather the logs and send them over to

the ELK stack discussed in the section that follows.

Winlogbeat

Winlogbeat is a data shipper that ships windows event logs to Logstash or

Elastic search cluster. It can read different windows event logs and forward them

26

promptly. It can send different types of events like Hardware events, Security Events,

System Events, and Application events. This tool can convert raw event data into a

structured format that is easy for filtering and aggregation.

ElastAlert

The logs that come to the ELK stack can be numerous and huge. For this, I

configured an alert system that can detect particular alerts and send them to us

directly. In this research, I used ElastAlert, an open-source Alerting system that can

be configured to send specific alerts. This tool can be customized to send many types

of Alerts. For my research, I was more interested in the events that are triggered when

someone connects remotely to a computer. In the appendix sections, I have explained

how I installed and configured ElastAlert to meet the research objectives.

An alert system was implemented that sends alerts to computers and cell

phones when a certain event or combination of events is triggered and sent through

Sysmon. No capability of this nature was identified while reviewing existing

literature.

27

CHAPTER 4

RESULTS AND ANALYSIS

Malware Dataset

As discussed in Chapter 2 malware infiltration has become a threat to

organizations and individuals. This malware has proven to be evasive in-spite of the

anti-viruses that may be in place, [52]. To achieve relevant and repeatable research

results, a malware dataset was needed in this research to demonstrate the effectiveness

of the developed system in profiling malware behavior using Sysmon logs. Modern

and freely accessible malware was the first consideration that was taken. Secondly

manually developed malware was taken into consideration to cover the problem

space. Zero-day attacks have wreaked havoc on systems that were otherwise deemed

secure [53].

The five malware samples that were selected for this research had a significant

impact when they were effected and previous data in this research has indicated their

vast exploitations. The two that were manually made served the purpose of trying to

identify malware behavior that can bypass legitimate anti-viruses. In my case avast

free anti-virus was chosen. Avast Free Antivirus won the product of the year award in

2018 [54]. The two manually made malware we able to bypass a fully updated free

Avast Antivirus. For consistency, a snapshot of the fully updated Anti-virus was taken

and used for the other malware.

The choice of publicly available malware ensured that this research can be

repeated elsewhere and the process of producing the two manually produced malware

28

is well documented in the appendix for the same purpose. With these others can easily

repeat, verify, and expand on the results of this research. The use of publicly available

malware that has affected real organizations and the use of malware that was able to

bypass a widely known and used anti-virus makes this research applicable and

relevant to organizations.

Analysis of the Data

Sysmon event logging was used to analyze malware behavior in this research.

The literature review identified a gap that led to the research question. It is in the

quest to answer the research question that Sysmon events logging was chosen to

identify malware behavior that may not be picked by anti-viruses. According to [55]

by analyzing Sysmon logs it is possible to detect threats that otherwise would go

undetected by traditional network intrusion detection systems and firewalls such as

network traffic. Though only avast free anti-virus was considered other freely

available malware scanners were used to show how the same malware samples would

fare in other Anti-virus environments. These free online scanning tools confirmed the

findings of our manually made malware that we're able to bypass Avast free anti-

virus. The findings are shown below.

mirc755.exe Malware

The first of the manually made malware that was made using Shellter recorded

the following scan results.

Scan results from VirusTotal

sha256:9b382b007e5d61d5e6c9a2378f207fcd6f329cd551975d67114472ba45

61b190

Scan results from Antiscan.me

29

power.exe Malware

The second manually made malware that was made using Zirikatu recorded

the following scan results:

Scan results from VirusTotal

sha256:da9121e03de8cb6374c77fac5000527c601ed5cf0a21961e2d623415c18

09142

Scan results from Antiscan.me

The above scan engines confirmed that the manually made malware were able

to bypass avast free anti-virus.

The next set of results was the Sysmon events that were triggered when all the

seven malware were executed in different instances of the same snapshot of a

windows 7 virtual machine.

Figures 3 through 7 show the events that were triggered by each malware.

From the figures, the Sysmon event that was created by all the payloads is the process

creation event and this event is triggered when there is a new process created in the

system. In and of itself, it is not sufficient proof that there is malware in the system

but the task was also to see the behavior patterns that are triggered near or at the same

time this process is triggered. It is however important to note that every malware that

was tested started by creating a process. This begs for a careful investigation of what

happens before, after, or even during that process or any noticeable behavior related

to the process.

The next Sysmon event that was noticed was event number three which is

triggered when there is a network connection noticed. Additional log information

from the process revealed that the IP address of the remote Machine which acted as a

command and control center was also revealed. This is very essential when tracing

malicious network connections. These two payloads were the ones that we're able to

30

bypass anti-virus software. These payloads were used to make remote connections to

the target machine. It is worth noting that malware that needs remote connections to

trigger Sysmon event three.

Sysmon event number five which is triggered when a process terminates. It’s

interesting to note that all the tested payloads at some point had their processes

terminated.

Six of the seven payloads triggered Sysmon event number eleven which is

triggered when a file is created. This event is very important when hunting for

malware because it can help to monitor autostart locations like the startup folder as

well as temporary and download directories which are common places for malware

drops during initial infection [56]. This event, therefore, has a high correlation to

malware, and the events that occur concerning this one and their sequences and

patterns of occurrence beg for investigation.

One malware Artemis triggered Sysmon event number twelve which is the

Registry Event (object create and delete) which can be useful for monitoring changes

to registry autostart locations or specific malware registry modifications. Registry

entries according to [57] can be useful in even finding the possible tools that were

executed during an incident investigation.

The other event that was triggered by one malware was the

FileCreateStreamHash event number fifteen. This event logs when a named file

stream is created. The event can also be used in malware or malware behavior

because it can track malware variants that drop their executables or configuration

settings via browser downloads. It captures that based on the browser attaching a

Zone. Identifier “mark of the web” stream.

31

Figure 3. VirusTotal for mirc755.exe

32

Figure 4. Antiscan.me for mirc755.exe

33

Figure 5. VirusTotal for power.exe

34

Figure 6. Antiscan for power.exe

35

Figure 7. Events Triggered by Each Malware

Event Execution Sequence and Timing

Analysis

The events that were triggered by Sysmon were further investigated as to the

sequence of the events and time intervals that took place between one event and

another one. It is important to note at this point that the time a malware takes for

execution is very key as this can determine whether a system will be compromised by

the malware or not.

According to [58] by the time malware is detected by the scanning software,

some damage could have taken place. The next step was to investigate the timings

between the various events that were triggered by the malware that was tested. In the

appendix, I have added graphs for the timing for each malware. Tabulated results can

be found in the list of figures:

For the njRAt malware, a process was created at the execution of the malware,

and another process was created after 27 milliseconds. Two files were created after

one minute and 752 milliseconds which was shortly followed by the start of another

36

process in 98 milliseconds. The process of process creation and file creation followed

in two successions with the time difference being in milliseconds. Finally, there was a

process termination in 10 minutes. One quick observation is that the malware process

as it works in a system can be so fast that in less than one second a lot could have

happened.

The event execution in the next malware which was Nivdort created a similar

pattern where there were two process creations, two file creations followed by two

process creations and finally the process was terminated. The process creations and

file creations all occurred in a matter of fewer than two seconds with the intervals

between each particular event being in milliseconds. The process was also terminated

18 seconds after the execution of the last event which was process creation.

The next malware which was from Dyre showed a pattern of process creation

and termination in pairs that all occurred within the same second with the differences

being milliseconds. The somoto malware started by creating files followed by process

creation, network connection, and process termination. The first three events all

occurred in the same second with the difference being in milliseconds. Another

network connection was made after 10 seconds and the process terminated after 12

seconds.

Artemis malware exhibited a unique feature of first creating a file stream

followed by process creation in a matter of milliseconds and then creating 12 files in

the same second which was followed by the creation of 62 processes within the same

minute with the difference between each of the created processes being less than a

second. Towards the end, the registry value was set twice and then followed by

process termination.

37

The last two malware that was analyzed was the ones that were manually

made. These were the ones that successfully bypassed the free avast anti-virus

software. The first one was the power.exe that was made by the help of Zirikatu and it

was supposed to provide a remote connection to a target machine. There was a

sequence of process creations followed by network connections and process

termination that all occurred in a matter of about 3 seconds with the time interval

between the individual processes being less than a second or a few seconds. The other

one was mirc755 which was made with the help of shellter. This malware exhibited a

similar pattern of process creation followed by a network connection and then a

process termination. The interval between the events was a matter of seconds with the

highest being 12 seconds and the others being in milliseconds.

From the samples that were tested, it was evident that malware triggers

different processes when in operation and a noticeable feature was that this can take

place in a matter of seconds. The following patterns were observed:

1. Process creation followed by some events within a short period may be an

indication of malware in a system.

2. 3 out of seven malware that was tested showed a correlation between process

creation and file creation within a short period and then a process termination at

the end.

3. One malware showed a series of pairs of process creation and termination in a

short period.

4. One malware showed a series of process creation that followed a file stream

creation and file creation. 62 processes were consecutively created.

5. Two malware that was targeted at bypassing anti-viruses and connecting to a

command and control center exhibited a pattern of process creation and network

connection within a short period followed by process termination.

Based on the 7 malware that was tested the following can be deduced:

1. Events that combine process creation with file creation or network connections

and then process termination in a short period could be an indication of malware

in the system.

38

2. Events that produce file streams and file creations followed by a

multiple/numerous process creation and then termination within a short period

could be an indication of malware in the system.

3. Events that produce multiple process creations and terminations within a short

period could be an indication of malware in the system.

Mitre ATT&CK

The next step was to analyze the events using a threat model. In my case, I

chose to use the Mitre ATT&CK model. It describes the actions an adversary takes in

an enterprise. This threat model was informed by credible sources like public

intelligence reporting, penetration testing, red teaming, and security research [59].

This framework also provides valuable mitigation and detection guides on the attack

vectors.

Figures 8 to 10 are a summary of some of the events that were triggered and

what are the suggested mitigations.

3
9

Figure 8. Network Connection

Figure 9. Remote Thread Creation

4
0

Figure 10. Registry Event and File Create Stream Hash

41

Event Alerting

The final step in this research was to make sure that events of interest can be

sent to an alert system that can do it live. An alert system ElastAlert was chosen and

configured to send specific alerts to a phone or any other gadget that can use telegram.

Previous literature did not indicate an alert system existing on such a framework as

the one I developed.

However, there was some evidence of it being used in other systems as a

reliable alerting system [60]. Clear instructions on how to install and configure the

system are found in the appendix. One of the malware mirc755.exe which was used to

create a remote connection was used to test the system by configuring an alert system

for any network connections. Below is a sample of the output of the alert which was

sent to an iPhone and also sent to a configured MacBook system with Telegram.

42

Figure 11. Sample Telegram Alert

43

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

This research provides tangible results to organizations on how they can use

Symon logs to investigate malware in general and also detect the bypassing of anti-

virus solutions. This chapter will discuss the contributions that the research has made

to the incident detection community. I have also highlighted the recommendations

that can help guide organizations that may desire to use this research in their

environment. I will also articulate the limitations of the research application. Finally, I

give future research ideas that can encourage other researchers to further explore this

research and expand on the ideas and results presented here.

Contributions

This research contributes to knowledge that can be applied by organizations to

implement effective logging on windows Microsoft systems using Sysmon. The

method used to implement this research can be used by organizations to compensate

for their anti-virus weaknesses.

This research contributed by proving that anti-viruses use signature-based

detection methods. The two malware that was made was able to bypass anti-viruses

but once they were loaded to publicly available scan engines they were able to be

detected by the anti-viruses. It is therefore important to provide compensatory

approaches to the anti-viruses thus improving the overall security of the organizations.

The detection also took place after some days meaning that there is a dangerous gap

between malware detection and the updating of the signature databases.

44

This research contributes by providing a system that can provide real-time

alerting of Sysmon events that can be detected on phone systems. Due to the nature of

the speed that malware use during execution it requires one to have an alert system

that is real-time and able to send notifications on your tablet on your phone.

This research used purely open-source software and it is a huge contribution

because organizations can adopt it in their environment at zero cost. This research

used Sysmon events and the order and sequence of their execution were seen from the

empirical data provided. The most triggered events and the prevalent behaviours are

recorded. The events that captured process creations, network connections, file

creations, and process terminations were most frequently triggered by the data set.

The research also proved that the time of execution of the malware by

different events proved to be very fast mostly in seconds or milliseconds. The dataset

used for this research provided proof that the system used in this study could be

successfully used to investigate malware and detect malware that can bypass anti-

viruses.

Limitations

This research has limitations that must be looked at to apply the results

appropriately. The first limitation is that the research relied primarily on open-source

software. The research did not use any commercially available solutions to address

the research problem. This means there could be commercially available solutions that

may address the research problem.

It is important to note at this point that this research was not meant to replace

anti-virus solutions but rather compensate the anti-virus software. It is intended to

work with anti-virus solutions to help investigate and detect incidences that may

bypass the capability of anti-virus solutions.

45

This research is limited by the versions of software used. The software

versions used can be upgraded anytime and the nature of the systems may not be the

same. This research also used Sysmon logs to evaluate logs and it did not consider

other logging software using the same malware dataset.

Recommendations

In the process of implementing this research, several recommendations were

brought forth. In light of the growing malware threats, organizations need to have logs

in place that can be looked at when an incident occurs. It is also important that

organizations detect malware as soon as possible. Due to the nature of the malware

attacks and also attacks from zero-day attacks organizations need systems that can

detect malware on the onset. Many anti-virus softwares use signatures to detect their

malware and these signatures may take some time before they are updated. This

research recommends using Sysmon to analyze logs with an Elastic stack to stay

proactive against malware threats.

Future Work Expectations

This research used the Sysmon events logs. The Appendices contain source

code and configuration files and instructions to help other researchers leverage the

progress made by this research. Researchers are encouraged to expand the sample

space of the malware used and implement any other instantiations that can be used to

analyze Sysmon logs.

This research used a manual method of analyzing malware dataset. More work

can be done by automating the processes and improving the data set. This research

also used the events created by Sysmon and researchers are encouraged to do the

dynamic analysis of the malware to determine if there are additional activities that

Sysmon does not currently monitor. Means could be explored that can lead to adding

46

this in the Sysmon software. Further work can be done to the alerting system to

include all the activities that are suspect of malware behavior.

Summary

The results of this research showed that Sysmon logging can be used to

provide logging information that is used when investigating malware. Using this

system malware can be detected and their activities triggered immediately. A dataset

was picked from publicly available malware. This malware was identified as a major

threat that has had serious effects on organizations making the research extremely

relevant and applicable today.

This research adds to the overall knowledge about incidence response and

anti-virus compensation. The contributions of this research fill those gaps that exist in

the anti-viruses and provide detailed configuration files that can enable organizations

to implement, verify, and enhance this research. Researchers are encouraged to build

upon the research created in this study and further explore and expand Sysmon

logging capabilities.

47

APPENDICES

48

APPENDIX A

PAYLOAD GENERATION

A.1 Generating Shellter payload

Shellter is a dynamic shellcode injection tool. According to [56] it was the first

truly dynamic PE (Portable Executable), infector ever created. It is used to inject

shellcode into native Windows applications and as per the time of this research, it

could only inject 32-bit applications.

The payload generated using shellter is injected into a legitimate windows

process. In my case, I used an Internet Relay Chat (IRC) installer otherwise know as

mIRC. The payload is injected into this installer and then used to infect a computer

and create a Remote Connection. The mIRC installer was downloaded from their

official site. According to, [65] mIRC is used by both organizations and individuals to

communicate widely. This makes it a good tool for hiding malware by injection as it

creates less suspicion when being installed in a system. The following steps were

taken to generate the payload:

 Install shellter in Kali Linux and run it by typing the words shellter

Run the shellter program by just typing the works shellter on the command

line in Kali Linux

 There are two options for Automatic mode and manual mode For this research

I chose manual mode because it helps me to choose what to exactly do with

the Portable Executable that I want to inject

 Choose PE Target

The next step is to choose PE Target. This is the genuine executable that I

injected with malicious code. In my case, this was the mIRC which is

mirc755.exe which was the latest version available when doing this research.

 Enable stealth mode or not The stealth mode allows a user to do a couple of

things with the executable like obfuscation and using polymorphic code. The

stealth mode allows for the original functionality of the program to be

maintained but if you just want to gain access to a computer you can decide

not to use it. In my case, I did not choose stealth mode as I was just trying to

gain access to another computer. The stealth mode allows the malware to

behave as normal while the intruders use it to do other functions. Thus the user

is fully unaware that the executable file is infected.

49

 Gather Dynamic Thread Context

In my case, I chose no

 Choose the number of Instructions

I chose 250 instruction since mIRC is small

I also chose not to check for self-modifying code while tracing and also not to

trace all threads

 Choose whether to use listed payload or Custom

In my case, I chose to use the first listed payload which is Meterpreter Reverse

TCP

 Set LHOST and LPORT

The next thing was to set the IP address of the local host that will be acting as

the command and control center and also the port it will be using.

 Prepend Polymorphic code or not

This is an important step as it allows the malware to change the way it works

while maintaining its functionality. This is key in anti-virus evasion as it helps

the code to change making it hard for the anti-virus to track its behavior.

In my case, I appended it 1500 times. After its done, the payload is ready for

execution and it can be sent to the target machine using any social engineering

method.

 Set up the handler in the Kali Machine

Once the payload is ready you need to set up the handler from the Kali

machine which makes it possible to catch the connection that the payload

makes back to the Kali machine.

 Connect and to the target machine and exploit

After these steps, you can run the malware in the target machine, and then

from the Kali machine you can for example get the information of the target

machine or even send files to Kali from it.

A.2 Generating Zirikatu payload

Another exploit tool that I used was zirikatu which can be downloaded from

GitHub [62]. zurikatu is a fully undetectable payload generator. The steps below were

used to generate the payload.

 Run the payload in Kali Linux

The payload can be run by just typing ./zirikatu.sh

50

 Choose the type of payload to use and the number of iterations to apply

In my case, I chose number 7 which is for a multi encoded payload and then

iterated it 40 times.

 Provide Kali Linux IP address and port number

After that, I provided the Kali Linux IP address and LHOST and also a port

number to be used as LPORT. In my case, I used port 4444

 Change an icon or not and provide a file name

In my case, I chose not to change the icon and then provided a file name.

 Create a simple server to help you transport the payload to the client's machine

I created a simple python server by simple going to the folder where the

payload we named is and issuing the command; python -m

SimpleHTTPServer

After that, you can download the payload in any machine in the network by

putting its IP address and port 8000

 Lastly, start the payload handler

I then started the payload handler from the Kali Linux machine and I was able

to get a meterpreter session once I executed the payload in the windows

machine.

51

APPENDIX B

INSTALLING AND CONFIGURING ELK

The following steps were taken to configure the ELK stack that I used in the research.

The following steps were taken to install the ELK stack in Ubuntu 18.

 Elasticsearch and Logstash need java so our first step was to install java. As at this

lab, Logstash does not support Java 10 so we used java 8. Install java 8 by running the

command below:

sudo apt install openjdk-8-jre apt-transport-https wget nginx. You can check the java

version installed by issuing the command: java -version. The output should be like

below from our ubuntu machine.

 Figure 12. Java-version Check

 Elastic provides a complete repository for Debian systems that includes the whole

stack. So first we added the GPG key by issuing the command below:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add –

 We then created a file at /etc/apt/sources.list.d/elastic.list and then added the repo by

issuing the command below:

deb https://artifacts.elastic.co/packages/6.x/apt stable main

 Save the file and exit. Then just update the program by issuing the command: sudo

apt-get update.

 The next step is to install the Elasticsearch according to the Elasticsearch installation

guide at

https://www.elastic.co/guide/en/elasticsearch/reference/current/install-

elasticsearch.html.

52

The deb package is recommended so we install it by first getting the PGP key. Issue

the command:

wget -qO - https://artifacts.elastic.co/GPG-KEY-elasticsearch | sudo apt-key add -

You should get an OK. message if all goes well.

 Set elastic package definition to our source list. Elastic search recommends that we

have “apt-transport-https” installed first. So issue the command:

sudo apt-get install apt-transport-https

 Add elastic packages source list definitions to your source list(This allowed us to

install Elasticsearch, Kibana and Logstash directly). Issue the command:

add-apt-repository “deb https://artifacts.elastic.co/packages/6.x/apt stable main”

 After updating the system again install elasticsearch and Kibana by issuing the

command:

sudo apt install elasticsearch kibana

 Its best practise to restrict access to elasticsearch on port 9200 from outside.

 edit the elasticsearch config file at /etc/elasticsearch/elasticsearch.yml

Remove the # symbol before the network host and add the IP address of the ubuntu

machine or just put localhost.

 Remove the # symbol before the port section http.port : 9200

 Start the elasticsearch service and check its status to confirm if its running

Figure 13. Elasticsearch Status Check

 Enable the service so that it will start when the computer boots up.

53

Figure 14. Elasticsearch Service Enabling

 Next we edit the kibana config file kibana.yml at /etc/kibana/kibana.yml.

Delete the # sign from the line server.host and put localhost as below:

Delete the # from server.port as below:

Delete the # elasticsearch.hosts as below:

 Start the Kibana service, check its status and enable it to start at system boot up.

 The next step was to install Nginx. Issue the command: apt-get -y install nginx

We configured Nginx as a reverse proxy.

Figure 15. Kibana File Edit

54

 Check the status of the nginx by issuing the command: systemctl status nginx

 Next we create an admin user to log on to our Kibana web interface. Issue the

command:

echo “kibadmin:‘openssl passwd -apr1‘“ | sudo tee -a /etc/nginx/htpasswd.users

follow the prompts to put a password and verify it.

 Remove the old nginx configuraion and create a new one. Issue the commands

below:

rm -r /etc/ngi nx/sites-available/default

touch /etc/nginx/sites-available/kibana We called ours Kibana but you can use any

name.

 edit the new config file as below:

 Test and check the status as below:

Figure 16. Kibana Service Check

55

Figure 17. Nginx Status Check

 Go to a browser and point it to the IP address of the ubuntu server and then log in

with the credentials we created before for accessing Kibana through the web

interface:

 Next we need to configure logstash that we installed before. We first need to

generate SSL Certificates in order to secure the connections between our

endpoints and our ELK stack. Create the directories that are needed to store our

certificates

Figure 18. Nginx Configuration Commands

56

Figure 19. Nginx Status Check figure and Private Keys

sudo mkdir -p /etc/pki/tls/certs

sudo mkdir /etc/pki/tls/private

 Generate the SSL certificate and private key in the locations we set before. Issue

the commands:

cd /etc/pki/tls

sudo openssl req -config /etc/ssl/openssl.cnf -x509 -days 3650 -batch -nodes

-newkey rsa:2048 -keyout private/logstash-forwarder.key -out

certs/logstash-forwarder.crt

 Next we create the custom Logstash configuration files. These files are located in

/etc/logstash/conf.d. The configuration consists of three sections: Inputs, Filters

and Out.

First we create our input file which sets the way on how logstash is going to

receive logs being sent to our ELK stack.

Create the file: sudo vi /etc/logstash/conf.d/02-beats-input.conf

Your file should look like the one below:

In my case I turned off SSL because of an existing bug in the ELK stack.

57

Figure 20. Logstash Configuration

 Next we create the output file: sudo vi

/etc/logstash/conf.d/50-elasticsearch-output.conf

Your file should look like the one below:

Figure 21. Lostash Output File Configuration

It’s ideal to note at this point that the index part already creates an index for the data

being sent to elasticsearch and there is therefore no need to upload a winlog beat

template to our elasticsearch instance.

 At this point we start logstash and check its status.

Figure 22. Logstash Status Check

58

APPENDIX C

INSTALLING AND CONFIGURING SYSMON

C.1 Installing Sysmon

As at this lab I used Sysmon v9.0 which can be downloaded from the link below:

https://docs.microsoft.com/en-us/sysinternals/downloads/Sysmon [63] The steps for

installing Sysmon are as follows:

 Extract the contents of the zipped Sysmon file to a directory of preference. In our

case we extracted it to the Downloads folder of the Windows 7 Virtual Machine.

To check the options available for Sysmon navigate to the folder where Sysmon

was installed and issue the command: Sysmon.exe /?

The option gives the available options that you can use when installing Sysmon.

At the very top it also shows the version of Sysmon that you are using and in our

case we are using version 9.0.

 We picked a basic installation. The first command -accepteula allows the program

to automatically accept the EULA. The second option -i is for the installation as

seen from the previous picture. Remember also to point it to the configuration file

which we downloaded and stored in the same folder which in our case is the

downloads folder. To do that change directory to where the Sysmon folder is and

issue the following command: A successful install will give the following

message:

 To check if your Sysmon config is already working navigate to windows event

viewer. Follow the path as follows: Applications and Service Logs > Microsoft >

Windows > Sysmon > Operational. If its operational you should have something

like the window below from out lab.

 Keep customizing your config file as many times as you may wish until you get

your desired end. For a quick start compare with existing config files that you can

freely find online. Just make sure you understand the rules in the config file for

optimal results. You can start with a few and keep adding them as you test.

59

Figure 23. Sysmon Version Check

Figure 24. Sysmon Installation

C.2 Configuration File

Sysmon uses a configuration that can be customised to meet the needs of

different situations. You can find pre-configured configurations that can suit your

needs or you can configure your own. For our case we used a configuration from

Github customized by swift on security. This configuration captures most of the

events to keep an eye on for security control. It can be downloaded on the following

Github link: https://github.com/SwiftOnSecurity/Sysmon-config/blob/master

/Sysmonconfig-export.xml [64].

60

Figure 25. Successful Sysmon Install message

Figure 26. Sample Operation Sysmon Event Viewer

61

APPENDIX D

INSTALLING AND CONFIGURING WINLOGBEAT

The steps for downloading and installing winlogbeat are as follows:

 Download winlogbeat from: https://www.elastic.co/downloads/beats/winlogbeat

 Unzip the downloaded folder and copy it to C: Program Files

Figure 27. Checking Winlogbeat Version

Our winlogbeat is version 6.7 as from the diagram.

 Open poweshell as Admin and navigate to the winlogbeat folder contents that we

copied in the previous step.

 Install winlogbeat by issuing the command: .\install-winlogbeat-service.ps1 You may

get the error below:

The fix is to run Set-ExecutionPolicy and change the Execution Policy setting as

below and type Y for yes when prompted.

http://www.elastic.co/downloads/beats/winlogbeat

62

 We now need to edit the winlogbeat config file so as it will work with logstash. Run a

text editor of your choice as an admin. In our case we used wordpad instead of

notepad because the xml file is more structured and easy to read line by line.

 Open the winlogbeat config file (winlogbeat.yml) in the winlogbeat folder. The first

thing we do is to edit the log type files that it collects and so we need to point it to the

Sysmon logs. We need to add the line name: Microsoft-windows-Sysmon/operational

as shown below:

 Optionally you can create a certificate from ubuntu and use it be putting it in the

section for certificates and also manually running it in the windows machine that will

be sending logs so that they are on a secure connection. For this experiment the

certificates were not used.

Figure 28. Possible Error During Installation

63

Figure 29. Fixing The Error

 Make sure the output.logstash section is uncommented by defining the host where

the logstash host will be running. In our case the IP address of the ubuntu server is

used. The ubuntu server 18 was used to install the ELK stack.

64

Figure 30. Pointing to Sysmon Logs

Figure 31. Defining the Host

 Test your winlogbeat config by running: .\winlogbeat.exe -c .\winlogbeat.yml-

configtest -e

65

If everything is fine you should see a line that says config OK as shown below

from our PowerShell output.

Figure 32. Winlogbeat Status Check

 As you can see the service is stopped and our action now is to start the service.

Issue the command: start-service winlogbeat from powershell and you should have it

running in the windows services if all went well as below:

 At this point its good to check if all our services are running.

Point your browser to the IP address of the ubuntu server where the ELK stack is

installed. Log in with the credentials we created and create a new index in kibana

called winlogbeat-* under the management section. At this point if everything is

running well we should have our logs coming from the windows VM to the elastic

stack.

You should have something similar to the diagram.

From the diagram we can see that we are getting logs from our windows 7 virtual

machine.

66

APPENDIX E

INSTALLING AND CONFIGURING ELASALERT

ElasticAlert requires some prerequisites listed below

Elasticsearch

Figure 33. Starting Winlogbeat

67

Figure 34. ELK operational Check

Figure 35. Sample Logs from Windows 7 Machine

68

ISO8601 or Unix timestamped data

Python 2.7

pip,see requirements.txt

(https://github.com/Yelp/elastalert/blob/master/requirements.txt)

Packages for ubuntu python-pip python-dev libffi-dev libssl-dev

The first thing is to install python 2.7.Issue the command : sudo apt-get install python-

minimal

Install needed packages: sudo apt-get install python-pip python-dev libffi-dev libssl-

dev

I did my installation by cloning the git repository. So we first install git by issuing the

command: sudo apt-get install git

ElastAlert is installed to the “opt” folder so the directory needs to be changed: sudo cd

/opt

Next Close a git repository: sudo git clone https://github.com/Yelp/elastalert.git

Next install the module as below:

sudo pip install “setuptools>=11.3”

sudo python setup.py install

A wrong version of elasticsearch may produce errors at this point. M ake sure

you use the latest version which above 5. In my case I used version 6.7

Configure ElastAlert

change directory to where you installed ElastAlert : cd /opt/elastalert/

make a copy of config.yml.example : sudo cp config.yaml.example

config.yaml

modify the config.yaml : vim config.yaml as below:

set the Elasticsearch hostname or Ip as follows : es_host : localhost

set the ElasticServer port : es_port : 9200

other options are optional as follows:

es_username

es_password

in my case i did not set those ones.

save and close

Create ElasticAlert index : sudo elastic-alert-create-index

The last step is to create a rule for your alert. For my case I created a rule that sends

an alert to my telegram App when a remote connection is established in a computer.

Most hackers gain and maintain access in computers by creating remote access.

69

5
8

APPENDIX F

GRAPHS FOR MALWARE EVENT SEQUENCE

Figure 36. mirc755 Event Sequence

70

5
9

Figure 37. Power.exe Event Sequence

71

Figure 38. NIvdort Event Sequence

72

Figure 39. Njrat Event Sequence

73

Figure 40. Somoto1 Event Sequence

74

Figure 41. Somoto2 Event Sequence

75

Figure 42. Artemis1 Event Sequence

76

Figure 43. Artemis2 Event Sequence

Figure 44. Artemis3 Event Sequence

77

REFERENCES

[1] K. Bissel, “Ninth Annual Cost of Cybercrime,” Accenture, 2019. [Online].

Available: https://www.accenture.com/us-en/insights/security/

cost-cybercrime-study. [Accessed Nov 1, 2019].

[2] S. Duncan, “The technical and social history of software engineering,” Softw.

Qual. Prof., vol. 16, no. 3, 2014.

[3] Sujith, “A Brief History of Antivirus Software,” TechlineInfo, 13-Oct-2013.

[Online]. Available: http://www.techlineinfo.com/

a-brief-history-of-antivirus-software/. [Accessed Nov 1, 2019].

[4] B. Thuraisingham, P. Parveen, M. M. Masud, and L. Khan, Big Data Analytics

with Applications in Insider Threat Detection. Boca Raton, FL: CRC Press,

2017.

[5] R. Pranamulia, Y. Asnar, and R. S. Perdana, “Profile hidden Markov model

for malware classification — Usage of system call sequence for malware

classification,” in 2017 International Conference on Data and Software

Engineering (ICoDSE), 2017, pp. 1–5.

[6] Assange, “Vault 7: Projects,” WikiLeaks- Releases. [Online]. Available:

https://wikileaks.org/vault7/releases/. [Accessed Oct 1, 2019].

[7] I. Alsmadi, The NICE Cyber Security Framework: Cyber Security Intelligence

and Analytics. Oxford, UK: Springer, 2019.

[8] Govolution, "AntiVirus Evasion Tool." 2019 [Online]. Available:

https://github.com/govolution/avet. [Accessed Aug 1, 2019].

[9] J. Koret and E. Bachaalany, The Antivirus Hacker’s Handbook. Indianapolis,

IN: Wiley, 2015.

[10] D. Regalado et al., Gray Hat Hacking: The Ethical Hacker’s Handbook. New

York, NY: McGraw-Hill Education, 2015.

[11] V. K. Velu, Mastering Kali Linux for Advanced Penetration Testing: Secure

Your Network with Kali Linux - The Ultimate White Hat Hackers’ Toolkit, 2nd

Revised. Birmingham, UK: Packt, 2017.

[12] KyREcon, “Shellter AV-Evasion Artware,” Shellter, 2017. [Online].

Available: https://www.shellterproject.com/. [Accessed July 1, 2019].

78

[13] P. Bramwell, Hands-On Penetration Testing on Windows: Unleash Kali

Linux, PowerShell, and Windows Debugging Tools for Security Testing and

Analysis. Birmingham, UK: Packt, 2018.

[14] P. Prasad, Mastering Modern Web Penetration Testing. Birmingham, UK:

Packt, 2016.

[15] S. Sinha, Beginning Ethical Hacking with Kali Linux: Computational

Techniques for Resolving Security Issues. New York, NY: Springer, 2018.

[16] Rapid7, “Metasploit Framework,” Metasploit, Aug-2019. [Online]. Available:

https://metasploit.help.rapid7.com/docs/msf-overview. [Accessed July 1,

2019].

[17] G. N. Barbosa and R. R. Branco, “Prevalent Characteristics in Modern

Malware.” Blackhat, 2014 [Online]. Available:

https://www.blackhat.com/docs/us-14/materials/

us-14-Branco-Prevalent-Characteristics-In-Modern-Malware.pdf. [Accessed

Nov 1, 2019].

[18] K. Bissel, “PowerShell Obfuscation Using SecureString,” Threat Vector, 12-

Sep-2018. [Online]. Available: https://threatvector.cylance.com/en_us/home/

unpacking-a-packer-powershell-obfuscation-using-securestring.html.

[Accessed July 8, 2019].

[19] J. Singh and J. Singh, “Challenges of malware analysis: Obfuscation

techniques,” Int. J. Inf. Secur. Sci., vol. 7, no. 3, pp. 100–110, 2018.

[20] B. Kolosnjaji et al., “Adversarial Malware Binaries: Evading Deep Learning

for Malware Detection in Executables,” presented at the 26th European Signal

Processing Conference (EUSIPCO), 2018, pp. 533–537.

[21] K. Mathur, S. Hiranwal, and S. Balaji, “A survey on techniques in detection

and analyzing malware,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no.

4, 2013.

[22] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,” in

2010 International Conference on Broadband, Wireless Computing,

Communication and Applications, 2010, pp. 297–300.

[23] E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classification: A

survey,” J. Inf. Secur., vol. 5, no. 2, pp. 56–64, Feb. 2014.

[24] M. A. Davis, S. M. Bodmer, and A. LeMasters, Hacking Exposed: Malware &

Rootkits Secrets & Solutions. New York, NY: McGraw-Hill Education, 2009.

[25] D. Uppal, V. Mehra, and V. Verma, “Basic survey on malware analysis, tools

and techniques,” Int. J. Comput. Sci. Appl. IJCSA, vol. 4, no. 1, pp. 103–112,

2014.

79

[26] D. K. Mahawer and A. Nagaraju, “Metamorphic malware detection using base

malware identification approach,” Secur. Commun. Netw., vol. 7, no. 11, pp.

1719–1733, 2014.

[27] B. B. Rad, M. Masrom, and S. Ibrahim, “Camouflage in malware: From

encryption to metamorphism,” Int. J. Comput. Sci. Netw. Secur., vol. 12, no. 8,

pp. 74–83, 2012.

[28] R. W. Beggs, Mastering Kali Linux for Advanced Penetration Testing.

Birmingham, UK: Packt, 2017.

[29] J. Drew, M. Hahsler, and T. Moore, “Polymorphic malware detection using

sequence classification methods and ensembles,” EURASIP J. Inf. Secur., vol.

2017, no. 1, p. 2, Jan. 2017.

[30] B. Wanswett and H. K. Kalita, “The threat of obfuscated zero day

polymorphic malwares: An analysis,” in 2015 International Conference on

Computational Intelligence and Communication Networks (CICN), 2015, pp.

1188–1193.

[31] B. J. Kumar, H. Naveen, B. P. Kumar, S. S. Sharma, and J. Villegas, “Logistic

regression for polymorphic malware detection using ANOVA F-test,” in 2017

International Conference on Innovations in Information, Embedded and

Communication Systems (ICIIECS), 2017, pp. 1–5.

[32] M. S. Khan, S. Siddiqui, and K. Ferens, “Cognitive modeling of polymorphic

malware using fractal based semantic characterization,” in 2017 IEEE

International Symposium on Technologies for Homeland Security (HST),

2017, pp. 1–7.

[33] C. Easttom, Modern Cryptography: Applied Mathematics for Encryption and

Information Security. New York, NY: McGraw-Hill Education, 2015.

[34] G. Weidman, Penetration Testing: A Hands-On Introduction to Hacking. San

Francisco, CA: No Starch Press, 2014.

[35] B. Payette, Windows PowerShell in Action. Shelter Island, NY: John Wiley,

2017.

[36] D. Patten, “The Evolution to Fileless Malware.” East Carolina University,

North Carolina, 2017.

[37] A. Mohanta, K. Velmurugan, and M. Hahad, Preventing Ransomware:

Understand, Prevent, and Remediate Ransomware Attacks. Birmingham, UK:

Packt, 2018.

[38] M. E. Russinovich and A. Margosis, Troubleshooting with the Windows

Sysinternals Tools. New York, NY: Microsoft Press, 2016.

[39] M. E. Russinovich, “How to Go from Responding to Hunting with

Sysinternals Sysmon,” in RSA Conference, San Francisco, CA, 2017.

80

[40] M. E. Russinovich, Malware Hunting with the Sysinternals Tools. 2012

[Online]. Available: https://channel9.msdn.com/Events/TechEd/Europe/

2012/SIA302. [Accessed June 28, 2019].

[41] M. E. Russinovich, “Tracking Hackers on Your Network with Sysinternals

Sysmon,” @GrandomThoughts, 12-Mar-2016. [Online]. Available:

http://graysonwalters.com/post/markrussinovich_Sysmon/. [Accessed: 28-Jun-

2019]

[42] T. W. Edgar and D. O. Manz, Research Methods for Cyber Security.

Rockland, MA: Syngress, 2017.

[43] L. Y. Nativ, "theZoo- A Live Malware Repository." 2019 [Online]. Available:

https://github.com/ytisf/theZoo. [Accessed Nov 1, 2019].

[44] VirusTotal, “VirusTotal - Free Online Virus, Malware and URL Scanner,”

Semantic Scholar, 2011. [Online]. Available: /paper/VirusTotal-Free-Online-

Virus%2C-Malware-and-URL-VirusTotal/

bca1b9e9d65fdb8a80293e00cd936535aef8fe21. [Accessed Nov 1, 2019]

[45] N. Jaswal, Mastering Metasploit. Birmingham, UK: Packt, 2016.

[46] P. Wagenseil, “Best Free Antivirus Software 2019,” Tom’s Guide, 10-Jul-

2019. [Online]. Available: https://www.tomsguide.com/us/

best-free-antivirus,review-6003.html. [Accessed Nov 7, 2019].

[47] M. Marco, “PreciseSecurity.com - Internet Security & News,”

PreciseSecurity.com, 05-Jan-2019. [Online]. Available: https://www.

precisesecurity.com/adware/pup-optional-somoto. [Accessed Sep 13, 2019].

[48] J. Spidle, “How to erase the artemis virus,” Chron.com. [Online]. Available:

https://smallbusiness.chron.com/eraseartemis-virus-50865.html. [Accessed

Sep 13, 2019].

[49] B. Stone-Gross and P. Khandhar, “Dyre Banking Trojan Threat Analysis,”

SecureWorks, 17-Dec-2014. [Online]. Available: https://www.secureworks.

com/research/dyre-banking-trojan. [Accessed Oct 13, 2019].

[50] R. H. Diwakar, “Nivdort: Data-Stealing Trojan Arrives via Spam,” McAfee

Blogs, 18-Feb-2016. [Online]. Available: https://www.mcafee.com/blogs/

other-blogs/mcafee-labs/nivdort-data-stealing-trojan-arrives-via-spam/.

[Accessed Sep 13, 2019].

[51] C. Osborne, “NjRat Secures Top Spot as Most Active Network Malware in

2017,” ZDNet, 23-Jan-2018. [Online]. Available: https://www.zdnet.com/

article/njrat-secures-top-spot-as-most-active-malware-on-networks-in-2017/.

[Accessed Sep 13, 2019].

81

[52] N. Thamsirarak, T. Seethongchuen, and P. Ratanaworabhan, “A case for

malware that make antivirus irrelevant,” in 2015 12th International

Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology (ECTI-CON), 2015, pp. 1–

6.

[53] B. Min, V. Varadharajan, U. Tupakula, and M. Hitchens, “Antivirus security:

Naked during updates,” Softw. Pract. Exp., vol. 44, no. 10, pp. 1201–1222,

2014.

[54] Avast AVG Team, “Avast Free Antivirus Wins Product of the Year,” CNET,

Feb-2019. [Online]. Available: https://www.cnet.com/forums/discussions/

avast-free-antivirus-wins-product-of-the-year/. [Accessed Sep 13, 2019].

[55] V. Mavroeidis and A. Jøsang, “Data-driven threat hunting using Sysmon,” in

Proceedings of the 2nd International Conference on Cryptography, Security

and Privacy, Guiyang, China, 2018, pp. 82–88.

[56] P. Delgado, “Threat Hunting with Sysmon: Word Document with Macro,”

Syspanda, 10-Oct-2017. [Online]. Available: https://www.syspanda.com/

index.php/2017/10/10/threat-hunting-Sysmon-word-document-macro/.

[Accessed Sep 13, 2019].

[57] J. C. Center, “Detecting Lateral Movement Through Tracking Event Logs.”

JPCERT Coordination Center, 12-Jun-2017 [Online]. Available:

https://msdnshared.blob.core.windows.net/media/2017/10/Detecting-Lateral-

Movement-through-Tracking-Event-Logs.pdf. [Accessed Nov 1, 2019].

[58] A. Islam and Z. Bu, “Classifying Sets of Malicious Indicators for Detecting

Command and Control Communications Associated with Malware,”

US9635039B125-Apr-2017 [Online]. Available: https://patents.google.com/

patent/US9635039B1/en. [Accessed Nov 1, 2019].

[59] B. E. Strom et al., “Finding Cyber Threats with ATT&CK-Based Analytics.”

The MITRE, 07-Jul-2017 [Online]. Available: https://www.mitre.org/

publications/technical-papers/finding-cyber-threats-with-attck-based-analytics.

[Accessed Nov 1, 2019].

[60] H. Virtanen, “Implementing Automated Log Based Alerts in a Patient

Information System,” Degree Programme in Business Information Systems,

Tampere University of Applied Sciences, Tampere, Finland, 2017 [Online].

Available: https://www.theseus.fi/bitstream/handle/10024/128480/

Virtanen_Henri.pdf?sequence=1&isAllowed=y. [Accessed Nov 1, 2019].

[61] mIRC.co, “About mirc.” [Online]. Available: https://www.mirc.com/

about.html. [Accessed Nov 1, 2019].

[62] Pasahitz, “Zirikatu.” [Online]. Available: https://github.com/pasahitz/zirikatu.

[Accessed Nov 1, 2019].

82

[63] Russinovich and Garnier, “Sysmon v11.0.” [Online]. Available:

https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon. [Accessed

May 1, 2019].

[64] SwiftOnSecurity, “sysmon-config.” Online].Available: https://github.com/

SwiftOnSecurity/sysmon-config/blob/master/sysmonconfig-export.xml.

[Accessed May 1, 2019].

